RAMANASRI IASIIFoS Institute

Linear Algebra

IFoS (IFS) Previous Year
Questions (PYQ) from

2020 to 2009

Ramana sri Sir

IAS, UPSC, IFS, IFoS, CIVIL

 SERVICE MAINS EXAMS MATHS OPTIONAL STUDY MATERIALS
Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

2020

1. If A is a skew-symmetric matrix and $I+A$ be a non-singular matrix, then show that $(I-A)(I+A)^{-1}$ is orthogonal.
[8 Marks]
2. By applying elementary row operations on the matrix $A=\left[\begin{array}{cccc}-1 & 2 & -1 & 0 \\ 2 & 4 & 4 & 2 \\ 0 & 0 & 1 & 5 \\ 1 & 6 & 3 & 2\end{array}\right]$, reduce it to a row-reduced echelon matrix. Hence find the rank of A
3. Let $T: R^{3} \rightarrow R^{3}$ be defined by $T(x, y, z)=(2 x,-3 y, x+y)$ and $B_{1}=\{(-1,2,0),(0,1,-1),(3,1,2)\}$ be a basis of R^{3}. Find the matrix representation of T relative to the basis B_{1}.
4. When is a matrix A said to be similar to another matrix B ?

Prove that
(i) If A is similar to B, then B is similar to A.
(ii) two similar matrices have the same eigenvalues.

Further, by choosing appropriately the matrices A and B, show that the converse of (ii) above may not be true.
[15 Marks]
5. (i) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ hence find its inverse. Also, express $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10, I$ as a Linear polynomial in A
(ii) Express the vector $(1,2,5)$ as a linear combination of the vectors $(1,1,1),(2,1,2)$ and $(3,2,3)$ if possible. Justify your answer
[9+6=15 Marks]

2019

6. Let $T: R^{3} \rightarrow R^{3}$ be a linear operator on R^{3} defined by $T(x, y, z)=$ $(2 y+z, x-4 y, 3 x)$ Find the matrix of T in the basis $\{(1,1,1),(1,1,0),(1,0,0)\}$.
[8 Marks]
7. The Eigen values of a real symmetric matrix A are $-1,1$ and -2 . The corresponding eigenvectors are $\frac{1}{\sqrt{2}}(-110)^{\mathrm{T}},\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)^{\mathrm{T}}$ and $\frac{1}{\sqrt{2}}(-1-10)^{\mathrm{T}}$ respectively. Find the matrix A^{4}.
[8 Marks]
8. Consider the singular matrix

$$
\mathrm{A}=\left[\begin{array}{cccc}
-1 & 3 & -1 & 1 \\
-3 & 5 & 1 & -1 \\
10 & -10 & -10 & 14 \\
4 & -4 & -4 & 8
\end{array}\right]
$$

Given that one Eigen value of A is 4 and one eigenvector that does not correspond to this Eigen value 4 is $(1100)^{\mathrm{T}}$. Find all the Eigen values of A other than 4 and hence also find the real numbers $\mathrm{p}, \mathrm{q}, \mathrm{r}$ that satisfy the matrix equation $\mathrm{A}^{4}+\mathrm{pA}^{3}+\mathrm{qA}^{2}+\mathrm{rA}=0$.
[15 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

9. (a) Consider the vectors $\mathrm{x}_{1}=(1,2,1,-1), \mathrm{x}_{2}=(2,4,1,1), \mathrm{x}_{3}=(-1,-2,0,-2)$ and $\mathrm{x}_{4}=(3,6,2,0)$ in R^{4}. Justify that the linear span of the set $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}$ is a subspace of R^{4} defines as $\left\{\left(\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right) \in \mathrm{R}^{4}: 2 \xi_{1}-\xi_{2}=0,2 \xi_{1}-3 \xi_{3}-\xi_{4}=0\right\}$
Can this subspace be written as $\{(\alpha, 2 \alpha, \beta, 2 \alpha-3 \beta): \alpha, \beta \in \mathrm{R}\}$? What is the dimension of this subspace?
[15 Marks]
10. (a) Using elementary row operations, reduce the matrix

$$
\mathrm{A}=\left[\begin{array}{llll}
2 & 1 & 3 & 0 \\
3 & 0 & 2 & 5 \\
1 & 1 & 1 & 1 \\
2 & 1 & 1 & 3
\end{array}\right]
$$

To reduced echelon form and find the inverse of A and hence solve the system of linear equations $\mathrm{Ax}=\mathrm{b}$, where $\mathrm{X}=(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{u})^{\mathrm{T}}$ andb $=(2,1,0,4)^{\mathrm{T}}$.
[15 Marks]

2018

11. Given that $\operatorname{Adj} A=\left[\begin{array}{lll}2 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1\end{array}\right]$ and $\operatorname{det} A=2$ Find the matrix A .
[8 Marks]
12. Prove that the Eigen values of a Hermitian matrix are all real.
[8 Marks]
13. Show that the matrices $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 0 & 3 \\ 0 & 2 & 2 \\ 3 & 2 & 0\end{array}\right]$ are congruent.
[10 Marks]
14. Show that the vectors $\alpha_{1}=(1,0,-\overline{1}), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2)$ form a basis for R^{3} Express each of the standard basis vectors as a linear combination of $\alpha_{1}, \alpha_{2} \alpha_{3}$
[10 Marks]
15. Let $T: V_{2}(R) \rightarrow V_{2}(R)$ be a linear transformation defined by $T(a, b)=(a, a+b)$ Find the matrix of, T taking $\left\{e_{1}, e_{2}\right\}$ as a basis for the domain and $\{(1,1),(1,-1)\}$ as a basis for the range.
[10 Marks]
16. If $(n+1)$ vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \alpha$ form a linearly dependent set, then show that the vector α is a linear combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} ;$ provided $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ form a linearly independent set.
[10 Marks]

2017

17. Let A be a square matrix of order 3 such that each of its diagonal elements is ' a ' and each of its offdiagonal elements is 1 . If $B=b A$ is orthogonal determine the values of a and b.
[8 Marks]
18. Let V be the vector space of all 2×2 matrices over the field R . Show that W is not a subspace of V , where
(i) W contains all 2×2 matrices with zero determine.
(ii) W consists of all 2×2 matrices A such that $A^{2}=A$
[8 Marks]
19. Using the Mean Value theorem, show that

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

(i) $\mathrm{f}(\mathrm{x})$ is constant in $[a, b]$ if $f^{\prime}(x)=0$ in $[a, b]$
(ii) $\mathrm{f}(\mathrm{x})$ is a decreasing function in (a, b) if $f^{\prime}(x)$ exists and is <0 everywhere in (a, b)
[8 Marks]
20. State the Cayley -Hamilton theorem. Verify this theorem for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right]$ Hence find A^{-1}
[10 Marks]
21. Reduce the following matrix to a row-reduce echelon form and hence find its rank:

$$
A=\left[\begin{array}{cccc}
-1 & 2 & -1 & 0 \\
2 & 4 & 4 & 2 \\
0 & 0 & 1 & 5 \\
1 & 6 & 3 & 2
\end{array}\right]
$$

[10 Marks]
22. Given that the set $\{u, v, w\}$ is linearly independent examine the sets
(i) $\{u+v, v+w, w+u\} \quad \mathrm{F}$
(ii) $\{u+v, u-v, u-2 v+2 w\}$
for linear independence
[10 Marks]
23. Find the Eigen values and the corresponding eigenvectors for the matrix $A=\left[\begin{array}{cc}0 & -2 \\ 1 & 3\end{array}\right]$ Examine whether the matrix A is diagonalizable. Obtain a matrix D (if it is diagonalizable) such that $D=p^{-1} A P$.
[10 Marks]

2016

24. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be given by $T(x, y, z)=(2 x-y, 2 x+z, x+2 z, x+y+z)$

Find the matrix of T with respect to standard basis of \mathbb{R}^{3} and \mathbb{R}^{4} (i.e., $(1,0,0),(0,1,0)$ etc.). Examine if T is a liner map.
[8 Marks]
25. For the matrix $A=\left[\begin{array}{rrr}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$, obtain the eight value and get the value of $A^{4}+3 A^{3}-9 A^{2}$
[8 Marks]
26. Let T be a linear map such that $T: V 3 \rightarrow V 2$ defined by $T\left(e_{1}\right)=2 f_{1}-f_{2}, T\left(e_{2}\right)=f_{1}+2 f_{2}, T\left(e_{3}\right)=0 f_{1}+0 f_{2}$ where e_{1}, e_{2}, e_{3} and f_{1}, f_{2} are standard basis in V_{3} and V_{2} Find the matrix of T relative to theses basis. Further take two other basis $B_{1}[(1,1,0)(1,0,1)(0,1,1)]$, and $B_{2}[(1,1)(1,-1)]$ obtain the matrix T_{1} relative to B_{1} and B_{2}.
[10 Marks]
27. For the matrix $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ Find two non-singular matrices P and Q such that $P A Q=I$ Hence find A^{-1}.
[10 Marks]
28. Examine whether the real quadratic form $4 x^{2}-y^{2}+2 z^{2}+2 x y-2 y z-4 x z$ is a positive definite of not. Reduce it to its diagonal form and determine its signature.
[10 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

2015

29. (a) Find an upper triangular matrix A such that $A^{3}=\left[\begin{array}{cc}8 & -57 \\ 0 & 27\end{array}\right]$
[8 Marks]
30. Let G be the liner operator on \mathbb{R}^{3} defined by

$$
G(x, y, z)=(2 y+z, x-4 y, 3 x)
$$

Find the matrix representation of G relative to the basis

$$
S=\{(1,1,1),(1,1,0)(1,0,0)\}
$$

[8 Marks]
31. Suppose U and W are distinct four-dimensional subspaces of a vector space V, where $\operatorname{dim} V=6$. Find the dimensional of $U \cap W$
[10 Marks]
32. Find the condition on a, b and c so that the following system in unknowns x, y and z has a solution:

$$
\begin{aligned}
& x+2 y-3 z=a \\
& 2 x+6 y-11 z=b \\
& x-2 y+7 z=c
\end{aligned}
$$

[10 Marks]
33. Find the minimal polynomial of the matrix $A=\left(\begin{array}{ccc}4 & -2 & 2 \\ 6 & -3 & 4 \\ 3 & -2 & 3\end{array}\right)$
[10 Marks]
34. Find a 3×3 orthogonal matrix whose first two rows are $\left[\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right]$ and $\left[0, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]$
[10 Marks]

2014

35. Show that $u_{1}=(1,-1,0), u_{2}=(1,1,0)$ and $u_{3}=(0,1,1)$ form a basis for \mathbb{R}^{3}.Express $(5,3,4)$ in terms of u_{1}, u_{2} and u_{3}
[8 Marks]
36. For the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$. Prove that $A^{n}=A^{n-2}+A^{2}-I, n \geq 3$
[8 Marks]
37. Let $B=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right]$ find all Eigen values and corresponding Eigen vectors of B viewed as a matrix over:
(i)The real field R
(ii)The complex field C .
[10 Marks]
38. Examine whether the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ is diagonalizable. Find all Eigen values. Then obtain matrix P such that $P^{-1} A P$ is a diagonal matrix.
[10 Marks]
39. Show that the mapping $T: V_{2}(\bar{R}) \rightarrow V_{3}(\bar{R})$ defined as $T(a, b)=(a+b, a-b, b)$ is a linear transformation .Find the range, rank and nullity of T
[10 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

40. Consider the line mapping $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given as $F(x, y)=(3 x+4 y, 2 x-5 y)$ with usual basis. Find the matrix associated with the linear transformation relative to the basis $S=\left\{u_{1}, u_{2}\right\}$ where $u_{1}=(1,2), u_{2}=(2,3)$
[10 Marks]

2013

41. Find the dimension and a basis of the solution space W of the system $x+2 y+2 z-s+3 t=0, x+2 y+3 z+s+t=0,3 x+6 y+8 z+s+5 t=0$
[8 Marks]
$\left.\begin{array}{l}\text { 42. Find the characteristic equation of the matrix } A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right] \text { and hence find the matrix } \\ \text { represented by } A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I \\ \text { 43. Let } V \text { be the vector space of } 2 \times 2 \text { matrices over } \mathbb{R} \text { and let } M=[8 \text { Marks] } \\ -2\end{array}\right]$ let $V \rightarrow V$ be the linear map defined by $F(A)=M A$. Find a basis and the dimension of
(i) The kernel of W of F
(ii) The image U of F
[10 Marks]
42. Locate the stationary point of the function $x^{4}+y^{4}-2 x^{2}+4 x y-2 y^{2}$ and determine their nature.
[10 Marks]
43. Find an orthogonal transformation of co-ordinates which diagonalizes the quadratic form

$$
q(x, y)=2 x^{2}-4 x y+5 y^{2}
$$

[10 Marks]
46. Discuss the consistency and the solutions of the equation

$$
x+a y+a z=1, a x+y+2 a z=-4, a x-a y+4 z=2
$$

for different values of a.
[10 Marks]
47. Let F be a subfield of complex number and T a function from $F^{3} \rightarrow F^{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+3 x_{3}, 2 x_{1}-x_{2},-3 x_{1}+x_{2}-x_{3}\right)$. What are the condition on (a, b, c) such that (a, b, c) be in the null space of T ? Find the nullity of T.
[10 Marks]
48. Let $H=\left[\begin{array}{rrr}1 & i & 2+i \\ -i & 2 & 1-i \\ 2-i & 1+i & 2\end{array}\right]$ be a Hermitian matrix. Find a non-singular matrix P such that $P^{t} H \bar{P}$ is diagonal and also find signature.
[10 Marks]

2012

49. Let $V=\mathbb{R}^{3}$ and $\alpha_{1}=(1,1,2), \alpha_{2}=(0,1,3), \alpha_{3}=(2,4,5)$ and $\alpha_{4}=(-1,0,-1)$ be the element of V. Find a basis for the intersection of the subspace spanned by $\left\{\alpha_{1}, \alpha_{2}\right\}$ and $\left\{\alpha_{3}, \alpha_{4}\right\}$.
[8 Marks]
50. Show that the set of all function which satisfy the differential equation $\frac{d^{2} f}{d x^{2}}+3 \frac{d f}{d x}=0$ is a vector space.
[8 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

51. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $f(a, b, c)=(a, a+b, 0)$ Find the matrices A and B respectively of the liner transformation f with respect to the standard basis $\left(e_{1}, e_{2}, e_{3}\right)$ and the basis $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$ where $e_{1}^{\prime}=(1,1,0), e_{2}^{\prime}=(0,1,1), e_{3}^{\prime}=(1,1,1)$. Also show that there exists an invertible matrix P such that $B=P^{-1} A P$
[10 Marks]
52. Verify Cayley-Hamilton theorem for the matrix $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ and find its inverse. Also express

$$
A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I \text { as a linear polynomial in } \mathrm{A} .
$$

[10 Marks]
53. Show that there are three real values of λ for which the equation:
$(a-\lambda) x+b y+c z=0, b x+(c-\lambda) y+a z=0, c x+a y+(b-\lambda) z=0$ are simultaneously true and that the product of these values of λ is $D=\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$
[10 Marks]
54. Find the matrix representation of linear transformation T on $V_{3}(\mathbb{R})$ defined as
$T(a, b, c)=(2 b+c, a-4 b, 3 a)$ corresponding to the basis $B=\{(1,1,1),(1,1,0),(1,0,0)\}$.
[10 Marks]

2011

55. Let V be the vector space of 2×2 matrices over the field of real number R. Let
$W=\{A \in V \mid$ trace $\mathrm{A}=0\}$ show that W is a subspace of V. Find a basis of W and dimension of W
[10 Marks]
56. Find the linear transformation from R^{3} into R^{3} which has its range the subspace spanned by $(1,0,-1),(1,2,2)$
[10 Marks]
57. Let
$V=\left\{(x, y, z, u) \in R^{4} ; y+z+u=0\right\}$,
$W=\left\{(x, y, z, u) \in R^{4}: x+y=0, z=2 u\right\}$
be two subspaces of R^{4} Find bases for $V, W, V+W$ and $V \cap W$
[10 Marks]
58. Find the characteristic polynomial of the matrix $A=\left(\begin{array}{ccc}3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1\end{array}\right)$ and hence Compute A^{10}
[10 Marks]
59. Let $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 0 & -5 & 6 \\ 0 & -3 & 4\end{array}\right)$ find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
[10 Marks]
60. Find an orthogonal transformation to reduce the quadratic form $5 x^{2}+2 y^{2}+4 x y$ to a canonical form.
[10 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

2010

61. Show that the set $P[t]=\left\{a t^{2}+b t+c / a, b, c \in \mathbb{R}\right\}$ forms a vector space over the field \mathbb{R} find a basis for this vector space what is the dimension of this vector space?
[8 Marks]
62. Determine whether the quadratic form $q=x^{2}+y^{2}+2 x z+4 y z+3 z^{2}$ is positive definite. [8 Marks]
63. Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2)$ form a basis for R^{3} Find the components of $(1,0,0)$ w.r.t. the basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$
[10 Marks]
64. Find the characteristic polynomial of $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 1 & 3\end{array}\right)$ Verify Cayley-Hamilton theorem for this matrix and hence find its inverse.
[10 Marks]
65. Let $A=\left(\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right)$. find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix
66. Find the rank of the matrix $\left(\begin{array}{ccccc}1 & 2 & 1 & 1 & 2 \\ 2 & 4 & 3 & 4 & 7 \\ -1 & -2 & 2 & 5 & 3 \\ 3 & 6 & 2 & 1 & 3 \\ 4 & 8 & 6 & 8 & 9\end{array}\right)($

2009
67. Let V be the vector space of polynomials over R Let U and W be the subspaces
generated by $\left\{t^{3}+4 t^{2}-t+3, t^{3}+5 t^{2}+5,3 t^{3}+10 t^{2}-5 t+5\right\}$
and
$\left\{t^{3}+4 t^{2}+6, t^{3}+2 t^{2}-t+5,2 t^{3}+2 t^{2}-3 t+9\right\}$
Respectively Find
(i) $\operatorname{dim}(U+W)$
(ii) $\operatorname{dim}(U \cap W)$
[10 Marks]
68. Find a linear map $T: R^{3} \rightarrow R^{4}$ whose image is generated $(1,2,0,-4)$ by and $(2,0,-1,-3)$ [10 Marks]
69. Let T be the linear operator on R^{3} defined by $T(x, y, z)=(2 x, 4 x-y, 2 x+3 y-z)$.
(i) Show that T is invertible.
(ii) Find a formula for T^{-1}
[10 Marks]

Ramanasri IAS/IFoS(IFS) Maths Optional Linear Algebra PYQ 2020 to 2009

70. Find the rank of the matrix: $A=\left(\begin{array}{ccccc}1 & 3 & 1 & -2 & -3 \\ 1 & 4 & 3 & -1 & -4 \\ 2 & 3 & -4 & -7 & -3 \\ 3 & 8 & 1 & -7 & -8\end{array}\right)$
[10 Marks]
71. Let $A=\left(\begin{array}{lll}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right)$ is A similar to a diagonal matrix? If so, find an invertible matrix P such that $P^{-1} A P$ is a diagonal matrix.
[10 Marks]
72. Find an orthogonal transformation of coordinates to reduce the quadratic form $q(x, y)=2 x^{2}+2 x y+2 y^{2}$ to a canonical form
