

Linear	
Programming	
IFoS (IFS) Previous Year	
Questions (PYQ) from	
2020 to 2009	
Ramana srí Sír	
IAS, UPSC, IFS, IFoS, CIVIL	
SERVICE MAINS EXAMS MATHS	
OPTIONAL STUDY MATERIALS	

WEBSITE: MATHEMATICSOPTIONAL.COM CONTACT: 8750706262 | 8750706363

2020

1. Solve graphically the following LPP: $Max \ z = 5x_1 - 3x_2$ subject to

$$\begin{array}{l} 3x_1 + 2x_2 \leq 12 \\ -x_1 + x_2 \geq 1 \\ -x_1 + x_2 \leq 2 \\ x_1, x_2 \leq 0 \end{array}$$

If the objective function z is changed to $\operatorname{Max} z = 6x_1 + 4x_2$, while the constraints remain the same, then comment on the number of solutions. Will (4,0) be also a solution? [8 Marks]

2. Solve the following LPP by simplex method:

Max $z = 2x_1 + x_2$ subject to $2x_1 - 2x_2 \le 1$ $2x_1 - 4x_2 \le 3$

$$2x_1 + x_2 \le x_1, x_2 \ge 0$$

Does there exist an alternate optional solution? If yes, give one and hence find all the optional solutions.

- [15 Marks]
- **3.** Find the minimum transportation cost using Vogel's approximation method for the following transportation problem:

4. A salesman wants to visit cities C_1, C_2, C_3 and C_4 . He does not want to visit any city twice before completing the tour of all the cities and wishes to return to his home city, the starting station. Cost of going from one city to another in rupees is given below in the table. Find the least cost route.

			10.01	Uy	
		C_1	C_2	C_3	C_4
	C_1	0	30	80	50
From city	C_2	40	0	140	30
	C_3	40	50	0	20
	C_4	70	80	130	0

5. Use simplex method to solve the following problem: Maximize $z = 2x_1 + 5x_2$

[15 Marks]

 $\begin{array}{lll} \mbox{Subject to} & x_1 + 4 x_2 \leq 24 \\ & 3 x_1 + x_2 \leq 21 \\ & x_1 + x_2 \leq 9 \\ & x_1, x_2 \geq 0 \end{array}$

8.

9.

and $x_1, x_2, x_3 \ge 0$

[15 Marks]

6. A firm manufactures two products A and B on which he profits earned per unit ₹ 3 and ₹ 4 respectively. Each product is processed on two machines M1 and M2. Product A requires one minute of processing time on M1 and two minutes on M2, while B requires one minute on M1 and one minute on M2. Machine M1 is available for not more than 7 hours 30 minutes, while machine M2 is available for 10 hours during any working day. Find the number of units of products A and B to be manufactured to get maximum profit, using graphical method.

2018

7. The capacities of three production facilities S_1, S_2 and S_3 and the requirements of four destinations D_1, D_2, D_3 and D_4 and transportation costs in rupees are given in the following table:

		D_1	D_2	D_3	D_4	Capacity	
	$S_{_1}$	19	30	50	10	7	
	$S_2^{}$	70	30	40	60	9	Find the minimum transportation cost using Vogel's
	S_{3}	40	8	70	20	18	
	Demand	5	8	7	14	34	
ļ	Approximati	on M	etho	lAV) b	M).		[12 Marks]
S	Solve by sim	plex ı	meth	od the	e follo	owing Linear	Programming Problem :
	Max	imize	eZ =	$3x_1 +$	$2x_2$ -	$+5x_3$	7
	Subj	ect to	o the	const	raints	5	V/
	$x_1 +$	$\cdot 2x_2 \cdot$	+ x ₃ ≤	≤ 430		\sim	
	$3x_1$	$+2x_{3}$	$_{3} \le 46$	30			
	$x_1 +$	$4x_2$	≤ 420)			
	x_1, x_2	x_{2}, x_{3}	≥0		$\overline{}$, ,	
				\rightarrow		201	7
						201	1
2	Solve by sim	plex I	methe	od the	e follo	owing LLP	
	Minimize Z	$= x_1 - x_1$	$-3x_{2}$	$+2x_{3}$			
	Subject to t	he co	onstra	ints			
	$3x_1 - x_2 - x_2$	+ 2x ₃ =	≤7				
	$-2x_1 + 4x_2$	$x_2 \leq 12$	2				
	$-4x_1 + 3x_2$	$x_2 + 8x_2$	$x_3 \leq 0$				

[14 Marks]

10. A Computer centre has four expert programmers. The centre needs four application programs to be developed the head of the centre after studying carefully the programs to be developed, estimates the computer times in hours required by the experts to the application programs as follows:

	Programs			
	Α	В	С	D
P_1	5	3	2	8
Programmers P_2	7	9	2	6
P_3	6	4	5	7
P_4	5	7	7	8

Assign the programs to the programmers in such a way that total computer time is least. [12 Marks]

2016

11. A company manufacturing air-coolers has two plants located at Bangalore and Mumbai with a weekly capacity of 200 units 100 units respectively. The company supplies air-coolers to its 4 showrooms situated at situated at Mangalore, Bangalore, Delhi and Goa which have a demand of 75, 100, 100 and 25 units respectively. Due to the differences in local taxes, showroom charges, transportation cost and others, the profits differ. The profits (in RS.) are shown in the following table:

From	To						
	Mangalore	Bangalore	Delhi	Goa			
Bangalore	90	90	100	100			
Mumbai	5	70	130	85			

Plane the production program so as to maximize the profit. The Company may have its production capacity at both plants partially or wholly unused. [12 Marks]

12. Prove that the set of all feasible solution of a linear programming problem is a convex set. [8 Marks]

2015

13. Solve the following transportation problem:

//	D_1	D_2	D_3	Supply
O_1	5	3	6	20
O_2	4	7	9	40
Demand	15	22	23	60

14. A manufacturer wants to maximize his daily output of bulbs which are made by two processes P_1 and P_2 , . If x_1 is the output by process P_1 and If x_2 is the output by process P_2 , then the total labour hours is given by $2x_1 + 3x_2$ and this cannot exceed 130, the total machine time is given by $3x_1 + 8x_2$

[10 Marks]

which cannot exceed 300 and the total raw material is given by $4x_1 + 2x_2$ and this cannot exceed 140. What should x_1 and x_2 be so that the total output $x_1 + x_2$ is maximum? Solve by the Simplex method only. [14 Marks]

15. Solve graphically:

Maximize z = 7x + 4y

Subject to $2x + y \le 2$, $x + 10y \le 10$ and $x \le 8$. (Draw your own graph without graph paper)

[10 Marks]

2014

16. Solve that following LPP graphically: Maximize $Z = 3x_1 + 4x_2$

Subject to $x_1 + x_2 \le 6$

$$x_1 - x_2 \le 2$$
$$x_2 \le 4$$
$$x_1, x_2 \ge 0$$

Write the dual problem of the above and obtain the optimal value of the objective function of the duel without actually solving it [15 Marks]

17. Obtain the initial basic feasible solution for the transportation problem by North-west corner rule:

19. Solve the following salesman problem:

Reputed Institute for IAS, UPSC, IFS, IFoS, CIVIL SERVICE EXAMS

Page 5

A	В	C	D
∞	12	10	15
16	∞	11	13
17	18	∞	20
13	13	18	∞
	$\begin{array}{c} A \\ \infty \\ 16 \\ 17 \\ 13 \end{array}$	$\begin{array}{c c} A & B \\ \hline \infty & 12 \\ 16 & \infty \\ 17 & 18 \\ 13 & 13 \\ \end{array}$	$\begin{array}{c ccc} A & B & C \\ \hline \infty & 12 & 10 \\ 16 & \infty & 11 \\ 17 & 18 & \infty \\ 13 & 13 & 18 \end{array}$

20. $x_1 = 4, x_2 = 1, x_3 = 3$ is a feasible solution of the system of equations

 $2x_1 - 3x_2 + 3x_3 = 8$ $x_1 + 2x_2 + 3x_3 = 15$

Reduce the feasible solution to the different basic feasible solution

2012

21. Solve the following problem by simplex method how does the optimal table indicate that the optimal solution obtained is not unique?

Maximize $z = 8x_1 + 7x_2 - 2x_3$

Subject to the constraints

$$x_{1} + 2x_{2} + 2x_{3} \le 12$$

$$2x_{1} + x_{2} - 2x_{3} \le 12$$

$$x_{1}, x_{2}, x_{3} \ge 0$$

[14 Marks]

[14 Marks]

[14 Marks]

22. Find the initial basic feasible solution of the following minimum cost transportation problem by least cost (matrix minima) method and using it find the optimal transportation cost: -

23. Reduce the feasible solution $x_1 = 2, x_2 = 1, x_3 = 1$ for the linear programming problem Maximize $Z = x_1 + 2x_2 + 3x_3$ Subject to $x_1 - x_2 + 3x_3 = 4$

 $2x_1 + x_2 + x_3 = 6$ $x_1, x_2, x_3 \ge 0$

Reputed Institute for IAS, UPSC, IFS, IFoS, CIVIL SERVICE EXAMS

to a basic feasible solution

[14 Marks]

24. A steel company has three open-hearth furnaces and four rolling mills. Transportation costs (rupees per quintal) for shipping steel from furnaces to rolling mills are given in the following table:

[10 Marks]

2010

26. ABC Electricals manufactures and sells two models of lamps L_1 and L2 the profit per unit being Rs 50 and Rs 30, respectively. The process involves two workers W_1 and W_2 who are available for 40 hours and 30 hours per week respectively. W_1 assembles each unit of L_1 in 30 minutes and that of L2 in 40 minutes. W_2 paints each unit of L_1 in 30 minutes and that of L2 in 15 minutes . Assuming that all lamps made can be sold, determine the weekly production figures that maximize the profit

[14 Marks]

27. Solve the following linear programming problem by the Simplex method:

Maximize
$$Z=3x_1^{}+4x_2^{}+x_3^{}$$
Subject to

$$x_{1} + 2x_{2} + 7x_{3} \le 8$$
$$x_{1} + x_{2} - 2x_{3} \le 6$$
$$x_{1}, x_{2}, x_{3} \ge 0$$

[14 Marks]

2009

28. Write the dual of the following LPP and hence, solve it by graphical method: Minimize $Z = 6x_1 + 4x_2$ Constraints

$$2x_1 + x_2 \ge 1$$

$$3x_1 + 4x_2 \ge 1.5$$

$$x_1, x_2 \ge 0$$
29. Solve by simplex method the following LPP
Maximize $Z = 5x_1 + 3x_2$
Constraints

$$3x_1 + 5x_2 \le 15$$

$$5x_1 + 2x_2 \le 10$$

$$x_1, x_2 \ge 0$$
12. Marks]