Vector Analysis

Previous year Questions from 2020 to 1992

2021-22

2020

1. For what value of a, b, c is the vector field $\bar{V}=(-4 x-3 y+a z) i+(b x+3 y+5 z) j+(4 x+c y+3 z) k$ irrotational? Hence, express \bar{V} as the gradient of a scalar function ϕ determine ϕ
[10 Marks]
2. For the vector function \bar{A} where $\bar{A}=\left(3 x^{2}+6 y\right) i-14 y z j+20 x z^{2} k$, calculate $\int_{C} \bar{A} \cdot d \bar{r}$ from $(0,0,0)$ to $(1,1,1)$ along the following paths:
(i) $x=t, y=t^{2}, z=t^{3}$
(ii) Straight lines joining $(0,0,0)$ to $(1,0,0)$ then to $(1,1,0)$ and then to $(1,1,1)$
(iii) Straight line joining $(0,0,0)$ to $(1,1,1)$ is the result same in all the cases? Explain the reason. [15 Marks]
3. Verify the stokes theorem for the vector field $\bar{F}=x y i+y z j+x z k$ on the surface S which is the part of the cylinder $z=1-x^{2}$ for $0 \leq x \leq 1,-2 \leq y \leq 2 ; S$ is oriented upwards.
4. Evaluate the surface integral $\iint_{s} \nabla \times \bar{F}$.nds for $\bar{F}=y i+(x-2 x z) j-x y k$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$-plane
[15 Marks]

2019

5. Find the directional derivative of the function $x y^{2}+y z^{2}+z x^{2}$ along the tangent to the curve $x=t^{2}, y=t^{2}, z=t^{3}$ at the point $(1,1,1)$
[10 Marks]
6. Find the circulation of \vec{F} round the curve C where $\vec{F}=\left(2 x+y^{2}\right) i(3 y-4 x) j$ and C is the curve $y^{2}=x$ from $(0,0)$ to $(1,1)$ and the curve $y=x^{2}$ from $(1,1)$ to
[15 Marks]
7. Find the radius of curvature and radius of torsion of the helix $x=a \cos u, y=a \sin u, z=a u \tan \alpha$
[15 Marks]
8. State Gauss divergence theorem. Verify this theorem for $\vec{F}=4 x i-2 y^{2} j+z^{2} k$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$
[15 Marks]
9. Evaluation by Stoke's theorem $\oint e^{x} d x+2 y d y-d z$ where C is the curve $x^{2}+y^{2}=4, z=2$.
[05 Marks]

2018

10. Find the angle between the tangent at a general point of the curve whose equations are

$$
\begin{equation*}
x=3 t, y=3 t^{2}, z=3 t^{3} \text { and the line } y=z-x=0 \tag{12Marks}
\end{equation*}
$$

[10 Marks]
11. Let $\vec{k}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$. Show that curl $(\operatorname{curl} \vec{v})=\operatorname{grad}(\operatorname{div} \vec{v})-\nabla^{2} \vec{v}$.
12. Evaluate the line integral $\int_{C}-y^{3} d x+x^{3} d y+z^{3} d z$ using stokes theorem. Here C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$. The orientation on C corresponds to counterclockwise motion in the $x y$-plane.
[13 Marks]
13. Let $\vec{F}=x y^{2} \vec{i}+(y+x) \vec{j}$ Integrate $(\nabla \times \vec{F}) \cdot \vec{k}$ over the region in the first quadrant bounded by the curves $y=x^{2}$ and $y=x$ using Green's theorem.
[13 Marks]
14. Find the curvature and torsion of the curve $\vec{r}=a(u-\sin u) \vec{i}+a(1-\cos u) \vec{j}+b u \vec{k}$
[12 Marks]
15. If S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, then evaluate

$$
\iint_{s}[(x+z) d y d z+(y+z) d z d x+(x+y) d x d y] \text { using gauss' divergence theorem. }
$$

[12 Marks]

2017

16. For what values of the constant a, b and c the vector $\bar{V}=(x+y+a z) \hat{i}+(b x+2 y-z) j+(-x+c y+2 z) k$ is irrotational. Find the divergence in cylindrical coordinates of the vector with these values.
[10 Marks]
17. The position vector of a moving point at time t is $\bar{r}=\sin t \hat{i}+\cos 2 t j+\left(t^{2}+2 t\right) k$. Find the components of acceleration \bar{a} in the direction parallel to the velocity vector \bar{v} and perpendicular to the plane of \bar{r} and \bar{v} at time $t=0$.
[10 Marks]
18. Find the curvature vector and its magnitude at any point $\bar{r}=(\theta)$ of the curve $r=(a \cos \theta, a \sin \theta, a \theta)$. Show that the locus of the feet of the perpendicular from the origin to the tangent is a curve that completely lies on the hyperboloid $x^{2}+y^{2}-z^{2}=a^{2}$.
[16 Marks]
19. Evaluate the integral $\iint_{S} \vec{F} . n d s$ where $\vec{F}=3 x y^{2} \hat{i}+\left(y x^{2}-y^{3}\right) j+3 z x^{2} K$ and S is a surface of the cylinder $y^{2}+z^{2} \leq 4,-3 \leq x \leq 3$ using divergence theorem.
[9 Marks]
20. Using Green theorem evaluate the $\int_{C} F(\vec{r}) \cdot d \vec{r}$ counterclockwise where $F(\vec{r})=\left(x^{2}+y^{2}\right) \hat{i}+\left(x^{2}-y^{2}\right) j$ and $d \vec{r}=x \hat{i}+d y j$ and the curve C is the boundary off the region $R=\left\{(x, y) \mid 1 \leq y \leq 2-x^{2}\right\}$.
[8 Marks]

2016

21. Prove that the vector $\vec{a}=3 \vec{i}+\hat{j}-2 \hat{k}, \vec{b}=-\hat{i}+3 \hat{j}+4 \hat{k}, \vec{c}=4 \hat{i}-2 \hat{j}-6 \hat{k}$ can from the sides of a triangle find the length of the medians of the triangle
[10 marks]
22. Find $f(r)$ such that $\nabla f=\frac{\vec{r}}{r^{5}}$ and $f(1)=0$
[10 marks]
23. Prove that $\oint_{C} f d \vec{r}=\iint_{S} d \vec{S} \times \nabla f$
[10 marks]
24. For the of cardioid $r=a(1+\cos \theta)$ show that the square of the radius of curvature at any point (r, θ) is proportion to r. Also find the radius of curvature if $\theta=0, \frac{\pi}{4}, \frac{\pi}{2}$.
[15 marks]

2015

25. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}-9=0$ and $z=x^{2}+y^{2}-3$ at (2,-1,2) [10 Marks]
26. A vector field is given by $\vec{F}=\left(x^{2}+x y^{2}\right) \hat{i}+\left(y^{2}+x^{2} y\right) \hat{j}$. Verify that the field is irrotational or not. Find the scalar potential.
[12 Marks]
27. Evaluate $\int_{C} e^{-x}(\sin y d x+\cos y d y)$, where C is the rectangle with vertices $(0,0)(\pi, 0),\left(\pi, \frac{\pi}{2}\right),\left(0, \frac{\pi}{2}\right)$

2014

28. Find the curvature vector at any point of the curve $\bar{r}(t)=t \cos t \hat{i}+t \sin t \hat{j}, 0 \leq t \leq 2 \pi$. Give its magnitude also.
[10 Marks]
29. Evaluate by Stokes' theorem $\int_{\Gamma}(y d x+z d y+x d z)$, where Γ is the curve given by $x^{2}+y^{2}+z^{2}-2 a x-2 a y=0, x+y=2 a$ starting from $(2 a, 0,0)$ and then going below the z-plane.
(20 Marks]

2013

30. Show the curve $\vec{x}(t)=t \hat{i}+\left(\frac{1+t}{t}\right) \hat{j}+\left(\frac{1-t^{2}}{t}\right) \hat{k}$ lies in a plane.
[10 Marks]
31. Calculate $\nabla^{2}\left(r^{n}\right)$ and find its expression in terms of r and n, r being the distance of any point (x, y, z) from the origin, n being a constant and ∇^{2} being the Laplace operator
[10 Marks]
32. A curve in space is defined by the vector equation $\vec{r}=t^{2} \hat{i}+2 t \hat{j}-t^{3} \hat{k}$. Determine the angle between the tangents to this curve at the points $t=+1$ and $t=-1$
[10 Marks]
33. By using Divergence Theorem of Gauss, evaluate the surface integral $\iint\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right)^{-\frac{1}{2}} d S$, where S is the surface e of the ellipsoid $a x^{2}+b y^{2}+c z^{2}=1, a, b$ and c being all positive constants.
[15 Marks]
34. Use Stokes' theorem to evaluate the line integral $\int_{C}\left(-y^{3} d x+x^{3} d y-z^{3} d z\right)$, where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+y+z=1$
[15 Marks]

2012

35. If $\vec{A}=x^{2} y z i-2 x z^{3} \vec{j}+x z^{2} \vec{k}, \vec{B}=2 z \vec{i}+y \vec{j}-x^{2} \vec{k}$ find the value of $\frac{\partial^{2}}{\partial x \partial y}(\vec{A}+\vec{B})$ at $(1,0,-2)$
36. Derive the Frenet-Serret formulae. Define the curvature and torsion for a space curve. Compute them for the space curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$. Show that the curvature and torsion are equal for this curve.
[20 Marks]
37. Verify Green's theorem in the plane for $\oint_{C}\left[x y+y^{2} d x+x^{2} d y\right]$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$
[20 Marks]
38. If $\vec{F}=y \vec{i}+(x-2 x z) \vec{j}-x y \vec{k}$, evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \vec{n} d \vec{s}$ where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$-plane.
[20 Marks]

2011

39. For two vectors \vec{a} and \vec{b} give respectively by $\vec{a}=5 t^{2} \hat{i}+t \hat{j}-t^{3} \hat{k}$ and $\vec{b}=\sin 5 t \hat{i}-\cos t \hat{j}$ determine:(i) $\frac{d}{d t}(\vec{a} \cdot \vec{b})$ and (ii) $\frac{d}{d t}(\vec{a} \times \vec{b})$
[10 Marks]
40. If u and v are two scalar fields and \vec{f} is a vector field, such that $u \vec{f}=\operatorname{gradv}$, find the value of \vec{f} curl \vec{f}
[10 Marks]
41. Examine whether the vectors $\nabla u, \nabla u$ and ∇w are coplanar, where u, v and w are the scalar functions defined by:

$$
\begin{aligned}
u & =x+y+z, \\
v & =x^{2}+y^{2}+z^{2} \\
\text { and } w & =y z+z x+x y
\end{aligned}
$$

[15 Marks]
42. If $\vec{u}=4 y \hat{i}+x \hat{j}+2 z \hat{k}$ calculate the double integral $\iint(\nabla \times \vec{u}) d \vec{s}$ over the hemisphere given by $x^{2}+y^{2}+z^{2}=a^{2}, z \geq 0$
43. If \vec{r} be the position vector of a point, find the value(s) of n for which the vector. $r^{n} \vec{r}$ is (i) irrotational, (ii) solenoidal
[15 Marks]
44. Verify Gauss' Divergence Theorem for the vector $\vec{v}=x^{2} \hat{i} \pm y^{2} \hat{j}+z^{2} \hat{k}$ taken over the cube $0 \leq x, y, z \leq 1$.
[15 Marks]

2010

45. Find the directional derivative of $f(x, y)=x^{2} y^{3}+x y$ at the point $(2,1)$ in the direction of a unit vector which makes an angle or $\frac{\pi}{3}$ with the x-axis.
[12 Marks]
46. Show that the vector field defined by the vector function $\vec{v}=x y z(y z \vec{i}+x y \vec{j}+x y \vec{k})$ is conservative.
47. Prove that $\operatorname{div}(f \vec{V})=f(\operatorname{div} \vec{V})+($ grad. $f) \vec{V}$ where f is a scalar function.
48. Use the divergence theorem to evaluate $\iint \vec{V} \vec{V} d A$ where $\vec{V}=x^{2} z \vec{i} y \vec{j}-x z^{2} \vec{k}$ and S is he boundary of the region bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4 y$.
[20 Marks]
49.

Verify Green's theorem for $e^{-x} \sin y d x+e^{-x} \cos y$ by the path of integration being the boundary of the square whose vertices are $(0,0),\left(\frac{\pi}{2,0}\right)\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\left(\frac{0, \pi}{2}\right)$
[20 Marks]

2009

50. Show that $\operatorname{div}\left(\operatorname{gradr}^{n}\right)=n(n+1) r^{n-2}$ where $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
[12 Marks]
51. Find the directional derivative of $(i) 4 x z^{3}-3 x^{2} y^{2} z^{2}$ (i) at $(2,-1,2)$ along z-axis (ii) $-x^{2} y z+4 x z^{2}$ at $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{\kappa}$.
[6+6=12 Marks]
52. Find the work done in moving the particle once round the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1, z=0$ under the field of force of given by $\bar{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}(3 x-2 y+4 z) \hat{k}$.
[20 Marks]
53. Using divergence theorem, evaluate $\iint_{S} \bar{A} \cdot d \bar{S}$ where $\bar{A}=x^{3} \hat{i}+y^{3} \hat{j}+z^{3} \hat{k}$ and S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$
[20 Marks]
54. Find the value of $\iint_{s}(\vec{\nabla} \times \vec{f}) \cdot d \vec{s}$ taken over the upper portion of the surface $x^{2}+y^{2}-2 a x+a z=0$ and the bounding curve lies in the plane $z=0$, when

$$
\vec{F}=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-z^{2}\right) \hat{k}
$$

[20 Marks]

2008

55. Find the constants a and b so that the surface $a x^{2}-b y z=(a+2) x$ will be orthogonal to the surface $4 x^{2} y+z^{3}=4$ at the point $(1,-1,2)$.
[12 Marks]
56. Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the scalar potential for \vec{F} and the work done in moving an object in this field from $(1-2,1)$ to $(3,1,4)$.
[12 Marks]
57. Prove that $\nabla^{2} f(x)=\frac{d^{2} f}{d r^{2}}+\frac{2}{r} \frac{d f}{d r}$ where $r=\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}$. Hence find $f(x)$ such that $\nabla^{2} f(r)=0$.
[15 Marks]
58. Show that for the space curve $x=t, y=t^{2}, z=\frac{2}{3} t^{3}$ the curvature and torsion are same at every point.
[15 Marks]
59. Evaluate $\int_{c} \overrightarrow{\mathrm{~A}} d \vec{r}$ along the curve $x^{2}+y^{2}=1, z=1$ form $(0,1,1)$ to $(1,0,1)$ if
$\overrightarrow{\mathrm{A}}=(y z+2 x) \hat{i}+x z \hat{j}+(x y+2 z) \hat{k}$.
[15 Marks]
60. Evaluate $\iint_{S} \vec{F} \hat{d} d$ were $\overrightarrow{\mathrm{A}}=(y z+2 x) \hat{i}+x z \hat{j}+(x y+2 z) \hat{k}, \iint_{S} \vec{F} \hat{n} d s$ and S is the surface of the cylinder bounded by $x^{2}+y^{2}=4 z=0$ and $z=3$
[15 Marks]

2007

61. If \vec{r} denotes the position vector of a point and if \hat{r} be the unit vector in the direction of $\vec{r}, r=|\vec{r}|$ determined $\operatorname{grad}\left(r_{-1}\right)$ in terms of \hat{r} and r.
[12 Marks]
62. Find the curvature and torsion at any point of the curve $x=a \cos 2 t, y=a \sin 2 t, z=2 a \sin t$.
[12 Marks]
63. For any constant vector, show that the vector \vec{a} represented by curl $(\vec{a} \times \vec{r})$ is always parallel to the vector \vec{a}, \vec{r} being the position vector of a point (x, y, z) measured from the origin.
[15 Marks]
64. If $\vec{r}=x \hat{i}+y \hat{j}+x \hat{k}$ find the value(s) of in order that $r^{n} \vec{r}$ may be (i) solenoidal (ii) irrotational
[15 Marks]
65. Determine $\int_{c}(y d x+z d y+x d z)$ by using Stoke's theorem, where C is the curve defined by $(x-a)^{2}+(y-a)^{2}+z^{2}=2 a^{2}, x+y=2 a$ that starts from the point $(2 a, 0,0)$ goes at first below the z-plane.
[15 Marks]

2006

66. Find the values of constants a, b and c so that the directional derivative of the function $f=a x y^{2}+b y z+c z^{2} x^{2}$ at the point $(1,2,-1)$ has maximum magnitude 64 in the direction parallel to z-axis.
[12 Marks]
67. If $\overline{\mathrm{A}}=2 \bar{i}+\overline{\mathrm{K}}, \overline{\mathrm{B}}=\bar{i}+\bar{j}+\overline{\mathrm{K}}, \bar{C}=4 \bar{i}-3 \bar{j}-7 \overline{\mathrm{~K}}$ determine a vector \bar{R} satisfying the vector equation $\bar{R} \times \bar{B}=\bar{C} \times \bar{B} \& \bar{R} \cdot \overline{\mathrm{~A}}=0$
[15 Marks]
68. Prove that $r^{n} \bar{r}$ is an irrotational vector for any value of n but is solenoidal only if $n+3=0$
[15Marks]
69. If the unit tangent vector \bar{t} and binormal \bar{b} make angles ϕ and ϕ respectively with a constant unit vector \bar{a} prove that $\frac{\sin \theta}{\sin \phi} \cdot \frac{d \theta}{d \phi} \cdot=-\frac{k}{\tau}$.
[15 Marks]
70. Verify Stokes' theorem for the function $\bar{F}=x^{2} \hat{i}-x y \hat{j}$ integrated round the square in the plane $z=0$ and bounded by the lines $x=0, y=0, x=a$ and $y=a, a>0$.
[15 Marks]

2005

71. Show that the volume of the tetrahedron $A B C D$ is $\frac{1}{6}(\overrightarrow{A B} \times \overrightarrow{A C}) \overrightarrow{A D}$ Hence find the volume of the tetrahedron with vertices $(2,2,2), \overline{(2,0,0}),(0,2,0)$ and $(0,0,2)$
[12 Marks]
72. Prove that the curl of a vector field is independent of the choice of coordinates
[12 Marks]
73. The parametric equation of a circular helix is $r=a \cos u \hat{i}+a \sin u \hat{j}+c u \hat{k}$ where c is a constant and u is a parameter. Find the unit tangent vector \hat{t} at the point u and the arc length measured form $u=0$ Also find $\frac{d \hat{t}}{d s}$ where s is the arc length.
[15 Marks]
74. Show that curl $\left(k \times \operatorname{grad} \frac{1}{r}\right)+\operatorname{grad}\left(k \cdot \operatorname{grad} \frac{1}{r}\right)=0$ where r is the distance from the origin and k is the unit vector in the direction $O Z$
75. Find the curvature and the torsion of the space curve
[15 Marks]
76. Evaluate by Gauss divergence theorem, where S is the surface of the cylinder bounded by and
[15 Marks]

2004

77. Show that if \bar{A} and \bar{B} are irrotational, then $\bar{A} \times \bar{B}$ is solenoidal.
[12 Marks]
78. Show that the Frenet-Serret formulae can be written in the form
$\frac{d \bar{T}}{d s}=\bar{\omega} \times \bar{T}, \frac{d \bar{N}}{d s}=\bar{\omega} \times \bar{N} \& \frac{d \bar{B}}{d x}=\bar{\omega} \times \bar{B}$, where $\bar{\omega}=\tau \bar{T}+k \bar{B}$.
[12 Marks]
79. Prove the identity $\nabla(\bar{A} \cdot \bar{B})=(\bar{B} \cdot \nabla) \bar{A}+(\bar{A} \cdot \nabla) \bar{B}+\bar{B} \times(\nabla \times \bar{A})+\bar{A} \times(\nabla \times \bar{B})$
[15 Marks]
80. Derive the identity $\iiint_{v}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) d V=\iint_{s}(\phi \nabla \psi-\psi \nabla \phi) \hat{n} d S$ where V is the volume bounded by the closed surface S.
[15 Marks]
81. Verify Stokes' theorem for $\hat{f}=(2 x-y) \hat{i}-y z^{2} \hat{j} \hat{z} \hat{k}$ where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$ and C is its boundary.
[15 Marks]

2003

82. Show that if $\mathrm{a}^{\prime} \mathrm{b}^{\prime}$ and c^{\prime} are the reciprocals of the non-coplanar vectors a, b and c , then any vector r may be expressed as $r=\left(r . a^{\prime}\right) a+\left(r . b^{\prime}\right) b+\left(r . c^{\prime}\right) c$.
[12 Marks]
83. Prove that the divergence of a vector field is invariant w, r, to co-ordinate transformations.
[12 Marks]
84. Let the position vector of a particle moving on a plane curve be $r(t)$, where t is the time. Find the components of its acceleration along the radial and transverse directions.
[15 Marks]
85. Prove the identity $\nabla A^{2}=2(A . \nabla) A+2 A \times(\nabla \times A)$ where $\nabla=\hat{i} \frac{\partial}{\partial x}+\hat{j} \frac{\partial}{\partial y}+\hat{k} \frac{\partial}{\partial z}$
[15 Marks]
86. Find the radii of curvature and torsion at a point of intersection of the surface

$$
x^{2}-y^{2}=c^{2}, y=x \tanh \left(\frac{z}{c}\right) .
$$

[15 Marks]
87. Evaluate \iint_{s} curtA.ds where S is the open surface $x^{2}+y^{2}-4 x+4 z=0, z \geq 0$ and

$$
A=\left(y^{2}+z^{2}-x^{2}\right) \hat{i}+\left(2 z^{2}+x^{2}-y^{2}\right) \hat{j}+\left(x^{2}+y^{2}-3 z^{2}\right) \hat{k} .
$$

[15 Marks]

2002

88. Let \bar{R} be the unit vector along the vector $\bar{r}(t)$ Show that $\bar{R} \times \frac{\overline{d R}}{d t}=\frac{\bar{r}}{r^{2}} \times \frac{\overline{d r}}{d t}$ where $r=|\bar{r}|$
[12 Marks]
89. Find the curvature k for the space curve $x=a \cos \theta, y=a \sin \theta, z=a \theta \tan \alpha$

15 Marks]
90. Show that $(\operatorname{cult} \bar{v})=\operatorname{grad}(\operatorname{divv})-\nabla^{2} \bar{v}$.
[15 Marks]
91. Let D be a closed and bounded region having boundary S . Further, let f is a scalar function having second partial derivatives defined on it. Show that $\iint_{S}($ fgradf $) . \hat{n} d s=\iiint_{v}\left[|g r a d f|^{2}+f \nabla^{2} f\right] d v$ Hence $\int f($ fgradf $) \cdot \hat{n} d s$ or otherwise evaluate for $f=2 x+y+2 z$ over $s=x^{2}+y^{2}+z^{2}=4$
[15 Marks]
92. Find the values of constants a, b and c such that the maximum value of directional derivative of $f=a x y^{2}+b y z+c x^{2} z^{2}$ at $(1,-1,1)$ is in the direction parallel to y-axis and has magnitude 6
[15 Marks]

2001

93. Find the length of the arc of the twisted curve $r=\left(3 t, 3 t^{2}, 2 t^{3}\right)$ from the point $t=0$ to the point $t=1$ Find also the unit tangent t , unit normal n and the unit binormal b at $t=1$.
94. Show that $\operatorname{curl} \frac{a \times r}{r^{3}}=-\frac{a}{r^{3}}+\frac{3 r}{r^{5}}(a . r)$ where a is constant vector.
[12 Marks]
95. Find the directional derivative of $f=x^{2} y z^{3}$ along $x=e^{-t}, y=1+2 \sin t, z=t-\cos t$ at $t=0$
[15 Marks]
96. Show that the vector field defined by $F=2 x y z^{3} i+x^{2} z^{3} j+3 x^{2} y z^{2} k$ is irrotational. Find also the scalar u such that $F=\operatorname{grad} u$
[15 Marks]
97. Verify Gauss' divergence theorem of $A=\left(4 x,-2 y^{2}, z^{2}\right)$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$.
[15 Marks]

2000

98. In what direction from the point $(-1,1,1)$ is the directional derivative $f=x^{2} y z^{3}$ of a maximum? Compute its magnitude.
[12 Marks]
99. Show that the covariant derivatives of the fundamental metric tensors $g_{i j} . g^{i}, \delta_{j}^{i}$ Vanish
(ii) Show that simultaneity is relative in special relativity theory.
[6+6=12 Marks]
100. Show that
$(i)(A+B) \cdot(B+C) \times(C+A)=2 A \cdot B \times C$
$(i i) \nabla \times(A \times B)=(B . \nabla) A-B(\nabla . A)-(A . \nabla) B+A(\nabla . B)$
[7+8=15 Marks]
101. Evaluate $\iint_{S} F . N d s$ where $F=2 x y i+y z^{2} j+x z k$ and S is the surface of the parallelepiped bounded
by $x=0, y=0, z=0 \cdot x=2 \cdot y=1$ and $z=3$
[15 Marks]
102. If $g_{i j}$ and $\gamma_{i j}$ are two metric tensors defined at/a point and $\left\{\begin{array}{l}l \\ i j\end{array}\right\}$ and $\left\lvert\, \begin{aligned} & l \\ & i j\end{aligned}\right.$ are the corresponding Christoffel symbols of the second kind, then prove that $\left\{\begin{array}{l}i j\end{array}\right\}_{-}^{l}{ }_{i j}^{l}$ is a mixed tensor of the type $A_{i j}^{l}$
103. Establish the formula $E=m c^{2}$ the symbols have their usual meaning.
[15 Marks]
[15 Marks]

1999

104. If $\bar{a}, \bar{b} \bar{c}$ are the position vectors of A, B, C prove that $\bar{a} \times \bar{b}+\bar{b}+\bar{c}+\bar{c} \times \bar{a}$ is vector perpendicular to the plane $A B C$
[20 Marks]
105. If $\bar{f}=\nabla\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$ find $\nabla \times \bar{F}$.
[20 Marks]
106. Evaluate $\int\left(e^{-x} \sin y d x+e^{-x} \cos y d y\right)$ (by Green's theorem), where C is the rectangle whose vertices
$\operatorname{are}(0,0),(\pi, 0),\left(\pi, \frac{\pi}{2}\right)$ and $\left(0, \frac{\pi}{2}\right)$
[20 Marks]
107. If r_{1} and r_{2} are the vectors joining the fixed points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ respectively to a variable point $P(x, y, z)$ then the values of $\operatorname{grad}\left(r_{1} \cdot r_{2}\right)$ and $\operatorname{curl}\left(r_{1} \times r_{2}\right)$.
[20 Marks]
108. Show that $(a \times b) \times c=a \times(a \times b)$ if either $b=0$ (or any other vector is 0) or c is collinear with a or b is orthogonal to a and c (both)
[20 Marks]
109. Prove that $\left\{\begin{array}{l}i \\ i k\end{array}\right\}=\frac{\partial}{\partial x_{k}}(\log \sqrt{g})$.
[20 Marks]

1997

110. Prove that if $\overrightarrow{\mathrm{A}}, \vec{B}$ and \vec{C} are there given non-coplanar vectors \vec{F} then any vector can be put in the form $F=\alpha \vec{B} \times \vec{C}+\beta \vec{C} \times \overrightarrow{\mathrm{A}}+\gamma \overrightarrow{\mathrm{A}} \times \vec{B}$ for given determine α, β, γ.
[20 Marks]
111. Verify Gauss theorem for $\vec{F}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$
[20 Marks]
112. Prove that the decomposition of a tensor into a symmetric and an anti-symmetric part is unique. Further show that the contracted product $S_{i j} T_{i j}$ of a tensor $T_{i j}$ with a symmetric tensor $S_{i j}$ is independent of the anti-symmetric part of $T_{i j}$.
[20 Marks]

1996

113. State and prove 'Quotient law' of tensors
[20 Marks]
114. If $x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$ show that
(i) $\vec{r} \times \operatorname{gradf}(r)=0$
(ii) $\operatorname{div}\left(r^{n} \vec{r}\right)=(n+3) r^{n}$

[20
[20 Marks]
115. Verify Gauss's divergence theorem for $\vec{F}=x y x \hat{i}+z^{2} \hat{j}+2 y z \hat{k}$ on the tetrahedron $x=y=z=, x+y+z=1$.
[20 Marks]

1995

116. Consider a physical entity that is specified by twenty-seven numbers $A_{i j k}$ in given coordinate system. In the transition to anther coordinates system of this kind. Let $A_{i j k} B_{j k}$ transform as a vector for any choice of the anti-symmetric tensor. Prove that the quantities $A_{i j k}-A_{i j k}$ are the components of a tensor $B_{j k}$ of third order. Is the component of tensor? Give reasons for your answer
[20 Marks]
117. Let the reason V bebounded by the smooth surface S and let n denote outward drawn unit normal vector at a point on S. If ϕ is harmonic in V , show that $\int_{s} \frac{\partial \phi}{\partial n} d s=0$
[20 Marks]
118. In the vector field $u(x)$ let there exists a surface curlv on which $v=0$. Show that, at an arbitrary point of this surface curlv is tangential to the surface or vanishes.
[20 Marks]

1994

119. Show that $r^{n} \vec{r}$ is an irrotational vector for any value of n , but is solenoidal only if $n=-3$.
[20 Marks]
120. If $\vec{F}=y \vec{i}+(x-2 x z) \vec{j}-x y \vec{k}$ evaluate $\iint_{S}(\Delta \times \vec{F}) \vec{n} d s$ Where S is the surface of the sphere
$x^{2}+y^{2}+z^{2}=a^{2}$ above the $x y$ plane.
[20 Marks]
121. Prove that $\left\{\begin{array}{c}i \\ i k\end{array}\right\}=\frac{\partial}{\partial x}(\log \sqrt{g})$.
[20 Marks]

1993

122. Prove that the angular velocity or rotation at any point is equal to one half of the curl of the velocity vector V.
[20 Marks]
123. Evaluate $\iint_{S} \Delta \times \vec{F} \vec{n} d s$ where S is the upper half surface of the unit sphere $x^{2}+y^{2}+z^{2}=1$ and $\vec{F}=z \hat{i}+x \hat{j}+y \hat{k}$
124. Show that $\frac{\partial A_{p}}{\partial x^{q}}$ is not a tensor even though A_{p} is a covariant tensor or rank one

1992

125. If $\vec{F}(x, y, z)=\left(y^{2}+z^{2}\right) \vec{i}+\left(z^{2}+x^{2}\right) \vec{j}+\left(x^{2} y^{2}\right) \vec{k}$ then calculate $\int_{c} \vec{f} \overrightarrow{d x}$ where C consist of
(i) The line segment form $(0,0,0)$ to $(1,1,1)$ (ii) the three line segments $A B, B C$ and $C D$ where A, B, C and D are respectively the points $(0,0,0),(1,0,0),(1,1,0)$ and $(1,1,1)$ (iii) the curve $\vec{x}+\overrightarrow{u i}+\overrightarrow{u^{2} j}+\overrightarrow{u^{2} k}, u$ from 0 to 1 .
126. If \vec{a} and \vec{b} are constant vectors, show that
(i) $\operatorname{div}\{x \times(\vec{a} \times \vec{x})\}=-2 \vec{x} \vec{a}$
(ii) $\operatorname{div}\{x \times(\vec{a} \times \vec{x}) \times(\vec{b} \times \vec{x})\}=2 \vec{a}(\vec{b} \times \vec{x})-2 b(\vec{a} \times \vec{x})$
[20 Marks]
127. Obtain the formula $\operatorname{div} \vec{A}=\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{-1}}\left\{\left(\frac{g}{g_{i j}}\right)^{1 / 2} A(i)\right\}$ where $A(i)$ are physical components of \vec{A} and use it to derive expression of $\operatorname{div} \vec{A}$ in cylindrical polar coordinates
