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      2020 

1. For what value of , ,a b c  is the vector field = − − + + + + + + +( 4 3 ) ( 3 5 ) (4 3 )V x y az i bx y z j x cy z k

irrotational? Hence, express V as the gradient of a scalar function  determine     [10 Marks] 

2. For the vector function A where = + − +2 2(3 6 ) 14 20A x y i yzj xz k , calculate .
C

A dr  from (0,0,0) to 

(1,1,1) along the following paths:  

(i) = = =2 3, ,x t y t z t   

(ii) Straight lines joining (0,0,0) to (1,0,0) then to (1,1,0)and then to (1,1,1)  

(iii) Straight line joining (0,0,0) to (1,1,1) is the result same in all the cases? Explain the reason. [15 Marks] 

3. Verify the stokes theorem for the vector field F xyi yzj xzk= + + on the surface S which is the part of 

the cylinder 
21z x= − for 0 1, 2 2;x y  −   S is oriented upwards.    [20 Marks] 

4. Evaluate the surface integral .
s

F nds   for = + − −( 2 )F yi x xz j xyk  and S is the surface of the 

sphere 
2 2 2 2x y z a+ + =  above the -xy plane       [15 Marks] 

 

2019 
5. Find the directional derivative of the function 2 2 2xy yz zx+ +  along the tangent to the curve 

2 2 3, ,x t y t z t= = = at the point (1,1,1)        [10 Marks] 

6. Find the circulation of F  round the curve C  where 2(2 ) (3 4 )F x y i y x j= + −  and C  is the curve 2y x=  

from (0,0)  to (1,1)  and the curve 2y x=  from (1,1)  to      [15 Marks] 

7. Find the radius of curvature and radius of torsion of the helix cos ,x a u=  sin , tany a u z au= =   

            [15 Marks]  

8. State Gauss divergence theorem. Verify this theorem for 2 24 2F xi y j z k= − +  taken over the region 

bounded by 2 2 4, 0x y z+ = =  and 3z =         [15 Marks] 

9. Evaluation by Stoke’s theorem 2x

C

e dx ydy dz+ −  where C  is the curve 2 2 4,x y+ =  2z = .   [05 Marks] 

2018 
10. Find the angle between the tangent at a general point of the curve whose equations are 

 2 33 , 3 , 3x t y t z t= = = and the line 0y z x= − =      [10 Marks] 

11. Let 1 2 3v v i v j v k= + + .Show that curl (curl v ) =grad (div v )
2 .v−     [12 Marks] 

12. Evaluate the line integral 
3 3 3

C

y dx x dy z dz− + +  using stokes theorem. Here C is the intersection of the 

cylinder 2 2 1x y+ = and the plane 1.x y z+ + = The orientation on C corresponds to counterclockwise 

motion in the xy -plane.          [13 Marks] 

13. Let 2 ( )F xy i y x j= + +  Integrate ( ).F k over the region in the first quadrant bounded by the curves 
2y x= and y x= using Green's theorem.        [13 Marks] 

14. Find the curvature and torsion of the curve ( sin ) (1 cos )r a u u i a u j buk= − + − +   [12 Marks] 
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15. If S  is the surface of the sphere 2 2 2 2x y z a+ + = ,then evaluate 

( ) ( ) ( )
s

x z dydz y z dzdx x y dxdy+ + + + +   using gauss’ divergence theorem.   [12 Marks] 

 

      2017 
16. For what values of the constant ,a b and c the vector ( ) ( 2 ) ( 2 )= + + + + − + − + +V x y az i bx y z j x cy z k is 

irrotational. Find the divergence in cylindrical coordinates of the vector with these values.  
            [10 Marks] 

17. The position vector of a moving point at time t is 2sin  cos2  ( 2 ) .r t i t j t t k= + + +  Find the components 

of acceleration a in the direction parallel to the velocity vector v and perpendicular to the plane of 
r  and v at time 0t = .           [10 Marks] 

18. Find the curvature vector and its magnitude at any point ( )r = of the curve ( cos , sin , )r a a a  = . 

Show that the locus of the feet of the perpendicular from the origin to the tangent is a curve that 

completely lies on the hyperboloid 2 2 2 2.x y z a+ − =        [16 Marks] 

19. Evaluate the integral .

S

F nds where 2 2 3 23 ( ) 3F xy i yx y j zx K= + − + and S is a surface of the cylinder

2 2 4,  3 3y z x+  −   using divergence theorem.      [9 Marks] 

20. Using Green theorem evaluate the ( ).

C

F r dr counterclockwise where 2 2 2 2( ) ( ) ( )F r x y i x y j= + + −  and

dr xi dy j= + and the curve C is the boundary off the region  2( , )  1 2R x y y x=   − .  [8 Marks] 

 

      2016 

21. Prove that the vector ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 2 , 3 4 , 4 2 6a i j k b i j k c i j k= + − = − + + = − − can from the sides of a 

triangle find the length of the medians of the triangle     [10 marks] 

22. Find ( )f r such that
5

r
f

r
 = and (1) 0f =         [10 marks]  

23. Prove that
C S

fdr dS f         [10 marks] 

24. For the of cardioid (1 cos )r a = + show that the square of the radius of curvature at any point

( , )r   is proportion to r.  Also find the radius of curvature if 0, , .
4 2

 
 =

   
[15 marks] 

 

     2015 

 

25. Find the angle between the surfaces 2 2 2 9 0x y z+ + − = and 2 2 3z x y= + − at (2, 1,2)−  [10 Marks] 

26. A vector field is given by 2 2 2 2ˆ ˆ( ) ( )F x xy i y x y j= + + +  . Verify that the field is irrotational or not. 

Find the scalar potential.         [12 Marks] 

27. Evaluate (sin cos ),x

C

e ydx ydy− +  whereC  is the rectangle with vertices (0,0)( ,0), , , 0,
2 2

 
 

   
   
   

 

            [12 Marks] 
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      2014        

28. Find the curvature vector at any point of the curve ( ) cos sin , 0 2r t t ti t t j t = +   . Give its 

magnitude also.          [10 Marks] 

29. Evaluate by Stokes’ theorem ( ),ydx zdy xdz


+ + where   is the curve given by 

2 2 2 2 2 0, 2x y z ax ay x y a+ + − − = + =  starting from (2 ,0,0)a and then going below the -z plane. 

            (20 Marks] 
  

      2013 

30. Show the curve 
21 1ˆ ˆ ˆ( )

t t
x t ti j k

t t

 + − 
= + +   

   
 lies in a plane.     [10 Marks] 

31. Calculate 2( )nr and find its expression in terms of r and ,n  r being the distance of any point 

( , , )x y z from the origin, n being a constant and 2 being the Laplace operator  [10 Marks] 

32. A curve in space is defined by the vector equation 2 3ˆ ˆ ˆ2r t i tj t k= + − . Determine the angle between 

the tangents to this curve at the points 1t = +  and 1t = −        [10 Marks] 

33. By using Divergence Theorem of Gauss, evaluate the surface integral ( )
1

2 2 2 2 2 2 2  ,a x b y c z dS
−

+ +

where S is the surface e of the ellipsoid 2 2 2 1,ax by cz+ + =  ,a b and c being all positive constants.

            [15 Marks]  

34. Use Stokes’ theorem to evaluate the line integral 3 3 3( ),
C

y dx x dy z dz− + − where C is the 

intersection of the cylinder 2 2 1x y+ = and the plane 1x y z+ + =     [15 Marks] 

 
  

      2012 

35. If  
2 22 32 , 2A x yzi xz j xz k B zi yj x k= − + = + −  find the value of 

2

( )A B
x y


+

 
at (1,0, 2)−  

            [12 Marks] 
36. Derive the Frenet-Serret formulae. Define the curvature and torsion for a space curve. Compute 

them for the space curve 2 32
, ,

3
x t y t z t= = = . Show that the curvature and torsion are equal for 

this curve.           [20 Marks] 

37. Verify Green’s theorem in the plane for 2 2

C

xy y dx x dy where C is the closed curve of the 

region bounded by y x= and 2y x=        [20 Marks] 

38. If ( )2 ,F yi x xz j xyk= + − − , evaluate ( ).
S

F nds  where S is the surface of the sphere 

2 2 2 2x y z a+ + =  above the -xy plane.        [20 Marks] 
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      2011 

39. For two vectors a andb give respectively by 2 3 ˆˆ ˆ5= + −a t i tj t k and ˆ ˆsin5 cos= −b ti tj determine:(i)

( ).
d

a b
dt

and (ii) ( )
d

a b
dt

          [10 Marks] 

40. If u and v are two scalar fields and f is a vector field, such that ,=u f gradv  find the value of

f curl f              [10 Marks] 

41. Examine whether the vectors , u u andw are coplanar, where ,u v and w are the scalar functions 

defined by: 

  
2 2 2

        ,

        

and 

= + +

= + +

= + +

u x y z

v x y z

w yz zx xy

         [15 Marks] 

42. If ˆˆ ˆ4 2= + +u yi xj zk calculate the double integral ( ) u ds  over the hemisphere given by

2 2 2 2 , 0+ + = x y z a z           [15 Marks]  

43. If r  be the position vector of a point, find the value(s) of n for which the vector. nr r is  (i) 
irrotational, (ii) solenoidal            [15 Marks] 

44. Verify Gauss’ Divergence Theorem for the vector 2 2 2 ˆˆ ˆ= + +v x i y j z k  taken over the cube

0 , , 1 x y z .            [15 Marks] 

      2010       

45. Find the directional derivative of ( ) 2 3, = +f x y x y xy at the point (2,1) in the direction of a unit 

vector which makes an angle or
3


with the x-axis.      [12 Marks] 

46. Show that the vector field defined by the vector function ( )= + +v xyz yzi xy j xyk is conservative.

            [12 Marks]  

47. Prove that ( ) ( ) ( ).= +div f V f divV grad f V  where f is a scalar function.    [20 Marks] 

48. Use the divergence theorem to evaluate 
s

V ndA  where 2 2= −V x ziy j xz k  and S is he boundary of 

the region bounded by the paraboloid 2 2= +z x y and the plane 4=z y .    [20 Marks] 

49. Verify Green’s theorem for sin cos− −+x xe ydx e y by the path of integration being the boundary of 

the square whose vertices are ( )0,0 , ,
2,0 2 2

    
  
  

and
0,

2

 
 
 

     [20 Marks] 

 

       2009 

50. Show that ( ) ( ) 21 −= +n ndiv gradr n n r where 2 2 2= + +r x y z .     [12 Marks] 

51. Find the directional derivative of 3 2 2 2( )4 3−i xz x y z (i) at ( )2, 1,2−  along z-axis 2 2( ) 4− +ii x yz xz  at 

( )1, 2,1− in the direction of ˆ ˆ ˆ2 2− −i j .             [6+6=12 Marks] 
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52. Find the work done in moving the particle once round the ellipse
2 2

1, 0
25 16

+ = =
x y

z  under the field 

of force of given by ( ) ( ) ( )2 ˆˆ ˆ2 3 2 4= − + + + − − +F x y z i x y z j x y z k .     [20 Marks]   

53. Using divergence theorem, evaluate .
s

A d S where 3 3 3 ˆˆ ˆ= + +A x i y j z k and S is the surface of the 

sphere 2 2 2 2+ + =x y z a                    [20 Marks] 

54. Find the value of ( ).
s

f d s  taken over the upper portion of the surface 2 2 2 0+ − + =x y ax az  

and the bounding curve lies in the plane 0=z  ,when

( ) ( ) ( )2 2 2 2 2 2 2 2 2 ˆˆ ˆ= + − + + − + + −F y z x i z x y j x y z k
     

[20 Marks] 

 

      2008 

55. Find the constants a and b so that the surface ( )2 2− = +ax byz a x  will be orthogonal to the surface

2 34 4+ =x y z  at the point ( )1, 1,2− .         [12 Marks] 

56. Show that ( )3 2 2 ˆˆ ˆ2 3= + + +F xy z i x j xz k  is a conservative force field. Find the scalar potential for F  

and the work done in moving an object in this field from ( )1 2,1−  to ( )3,1,4 .  [12 Marks]  

57. Prove that ( )
2

2

2

2
 = +

d f df
f x

dr r dr
where ( )

1
2 2 2 2= + +r x y z . Hence find ( )f x such that ( )2 0 =f r . 

            [15 Marks] 

58. Show that for the space curve 2 32
, ,

3
= = =x t y t z t  the curvature and torsion are same at every 

point.             [15 Marks]   

59. Evaluate 
c

dr  along the curve 2 2 1, 1+ = =x y z  form ( )0,1,1 to ( )1,0,1  if

( ) ( ) ˆˆ ˆ2 2 = + + + +yz x i xzj xy z k .        [15 Marks] 

60. Evaluate ˆ
s

Fnd were ( ) ( ) ˆˆ ˆ ˆ2 2 , = + + + + 
s

yz x i xzj xy z k Fnds
 and S is the surface of the cylinder 

bounded by 2 2 4 0+ = =x y z and 3=z         [15 Marks] 

  

      2007 

61. If r denotes the position vector of a point and if r̂  be the unit vector in the direction of , =r r r  

determined grad ( )1−r in terms of r̂ and r .        [12 Marks] 

62. Find the curvature and torsion at any point of the curve cos 2 , sin 2 , 2 sin= = =x a t y a t z a t .  

            [12 Marks] 

63. For any constant vector, show that the vector a represented by curl ( )a r is always parallel to the 

vector ,a r  being the position vector of a point ( ), ,x y z measured from the origin.  [15 Marks] 

64. If ˆˆ ˆ= + +r xi yj xk  find the value(s) of in order that nr r may be (i) solenoidal (ii) irrotational  

            [15 Marks] 
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65. Determine ( )+ +
c

ydx zdy xdz  by using Stoke’s theorem, where C is the curve defined by

( ) ( )
2 2 2 22 , 2− + − + = + =x a y a z a x y a  that starts from the point ( )2 ,0,0a  goes at first below the 

z-plane.            [15 Marks] 
     2006 
 

66. Find the values of constants a, b and c so that the directional derivative of the function
2 2 2= + +f axy byz cz x  at the point ( )1,2, 1− has maximum magnitude 64 in the direction parallel to 

z-axis.            [12 Marks] 

67. If 2 , , 4 3 7 = +  = + + = − − i i j C i j  determine a vector R satisfying the vector equation

& . 0 =   =R B C B R               [15 Marks]  

68. Prove that nr r is an irrotational vector for any value o f n but is solenoidal only if 3 0+ =n  
            [15Marks] 

69. If the unit tangent vector t  and binormalb  make angles and respectively with a constant unit 

vector a  prove that
sin

. .
sin

 

  
= −

d k

d
.        [15 Marks] 

70. Verify Stokes’ theorem for the function 2ˆ ˆ= −F x i xyj  integrated round the square in the plane 0=z  

and bounded by the lines 0, 0,= = =x y x a  and , 0.= y a a      [15 Marks] 
 

     2005 
 

71. Show that the volume of the tetrahedron ABCD is ( )
1

6
AB AC AD  Hence find the volume of the 

tetrahedron with vertices ( ) ( ) ( )2,2,2 , 2,0,0 , 0,2,0 and ( )0,0,2      [12 Marks]  

72. Prove that the curl of a vector field is independent of the choice of coordinates   [12 Marks]  

73. The parametric equation of a circular helix is ˆˆ ˆcos sin= + +r a ui a uj cuk  where c is a constant and u 

is a parameter. Find the unit tangent vector t̂  at the point u and the arc length measured form 0=u  

Also find
ˆdt

ds
where s is the arc length.       [15 Marks]  

74. Show that
1 1

curl grad grad .grad 0
   

 + =   
   
k k

r r
 where r is the distance from the origin and k is the 

unit vector in the direction OZ         [15 Marks] 
75. Find the curvature and the torsion of the space curve      [15 Marks]  
76. Evaluate by Gauss divergence theorem, where S is the surface of the cylinder bounded by and  

            [15 Marks] 

      2004 
77. Show that if A and B  are irrotational, then A B is solenoidal.    [12 Marks] 
78. Show that the Frenet-Serret formulae can be written in the form

, & ,  =  =  = 
dT d N d B

T N B
ds ds dx

 where = +T kB .    [12 Marks]  

79. Prove the identity ( ) ( ) ( ) ( ) ( ). . . =  +  +   +  A B B A A B B A A B      [15 Marks]  
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80. Derive the identity ( ) ( )2 2 ˆ        −  =  −  
v s

dV ndS  where V is the volume bounded by 

the closed surface S.           [15 Marks] 

81. Verify Stokes’ theorem for ( ) 2ˆ ˆˆ ˆ2= − −f x y i yz jzk  where S is the upper half surface of the sphere
2 2 2 1+ + =x y z  and C is its boundary.        [15 Marks]

  

      2003     
82. Show that if a’ b’ and c’ are the reciprocals of the non-coplanar vectors a, b and c , then any vector 

r  may be expressed as ( ) ( ) ( ). ' . ' . ' .= + +r r a a r b b r c c        [12 Marks] 

83. Prove that the divergence of a vector field is invariant w, r, to co-ordinate transformations. 
             [12 Marks]  

84. Let the position vector of a particle moving on a plane curve be ( )r t , where t is the time. Find the 

components of its acceleration along the radial and transverse directions.   [15 Marks] 

85. Prove the identity ( ) ( )2 2 . 2 =  +  A A A A A  where ˆˆ ˆ  
 = + +

  
i j k

x y z
  [15 Marks]  

86. Find the radii of curvature and torsion at a point of intersection of the surface

2 2 2 , tanh
 

− = =  
 

z
x y c y x

c
.         [15 Marks]  

87. Evaluate .   
s

curtA ds where S is the open surface 2 2 4 4 0, 0+ − + = x y x z z  and

( ) ( ) ( )2 2 2 2 2 2 2 2 2 ˆˆ ˆ2 3= + − + + − + + −A y z x i z x y j x y z k .     [15 Marks]  

      2002 

88. Let R  be the unit vector along the vector ( )r t Show that
2

 = 
dR r dr

R
dt r dt

where =r r  [12 Marks] 

89. Find the curvature k for the space curve cos , sin , tan   = = =x a y a z a   15 Marks]  

90. Show that ( ) ( ) 2= −cultv grad divv v .       [15 Marks] 

91. Let D be a closed and bounded region having boundary S. Further, let f is a scalar function having 

second partial derivatives defined on it. Show that ( )
2 2ˆ.  = + 

  
s v

fgradf nds gradf f f dv  Hence

( ) ˆ.
s

fgradf nds  or otherwise evaluate for 2 2= + +f x y z  over 2 2 2 4= + + =s x y z  [15 Marks] 

92. Find the values of constants a, b and c such that the maximum value of directional derivative of
2 2 2= + +f axy byz cx z  at ( )1, 1,1−  is in the direction parallel to y-axis and has magnitude 6  

            [15 Marks] 
  

     2001 
 

93. Find the length of the arc of the twisted curve ( )2 33 ,3 ,2=r t t t from the point 0=t to the point 1=t  

Find also the unit tangent t, unit normal n and the unit binormal b at 1=t .    [12 Marks] 

94. Show that ( )3 3 5

3
.


= − +

a r a r
curl a r

r r r
where a is constant vector.    [12 Marks] 



 

Reputed Institute for Maths Optional of UPSC, IAS, IFoS (IFS), Civil Services and State PCS Exams  Page 9 

95. Find the directional derivative of 2 3=f x yz along , 1 2sin , cos  −= = + = −tx e y t z t t at 0=t  

            [15 Marks] 

96. Show that the vector field defined by 3 2 3 2 22 3= + +F xyz i x z j x yz k is irrotational. Find also the scalar 

u such that  =F grad u           [15 Marks] 

97. Verify Gauss’ divergence theorem of ( )2 24 , 2 ,= −A x y z  taken over the region bounded by

2 2 4, 0+ = =x y z and 3=z .           [15 Marks] 

      2000 

 

98. In what direction from the point ( )1,1,1− is the directional derivative 2 3=f x yz of a maximum? 

Compute its magnitude.          [12 Marks] 

99. Show that the covariant derivatives of the fundamental metric tensors . ,ij i

ij jg g Vanish 

(ii) Show that simultaneity is relative in special relativity theory.     [6+6=12 Marks] 
100. Show that  

( )( ) ( ) ( ). 2 .+ +  + = i A B B C C A A B C   

( ) ( ) ( ) ( ) ( ) ( ). . . .  =  −  −  + ii A B B A B A A B A B     [7+8=15 Marks] 

101. Evaluate .
S

F Nds  where 22= + +F xyi yz j xzk  and S is the surface of the parallelepiped bounded 

by 0, 0, 0. 2. 1= = = = =x y z x y and 3=z         [15 Marks] 

102. If ijg  and ij are two metric tensors defined at a point and  l

ij
and l

ij  are the corresponding 

Christoffel symbols of the second kind, then prove that  −l l

ij ij  is a mixed tensor of the type l

ijA  

            [15 Marks] 

103. Establish the formula 2=E mc  the symbols have their usual meaning.    [15 Marks] 
 

      1999 
 

104. If ,a bc are the position vectors of , ,A B C prove that  + + + a b b c c a  is vector perpendicular to 

the plane ABC           [20 Marks] 

105. If ( )3 3 3 3=  + + −f x y z xyz findF .       [20 Marks] 

106. Evaluate ( )sin cos− −+
x x

c

e ydx e ydy (by Green’s theorem), where C is the rectangle whose vertices 

are ( ) ( )0,0 , ,0 , ,
2


 

 
 
 

and 0,
2

 
 
          

[20 Marks] 

      1998 
 

107. If 
1r and 2r  are the vectors joining the fixed points ( )1 1 1, ,A x y z and ( )2 2 2, ,B x y z respectively to a 

variable point ( ), ,P x y z then the values of grad ( )1 2.r r and curl ( )1 2r r  .   [20 Marks] 

108. Show that ( ) ( )  =  a b c a a b if either 0=b (or any other vector is 0) or c is collinear with a or b is 

orthogonal to a and c (both)         [20 Marks] 

109. Prove that ( )log
 
= 
  k

i
g

ik x
.         [20 Marks] 
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      1997 
 

110. Prove that if A,B andC  are there given non-coplanar vectorsF then any vector can be put in the 

form A AF B C C B  =  +  +   for given determine , ,   .     [20 Marks] 

111. Verify Gauss theorem for 2 2ˆ ˆ ˆ4 2F xi y j z k= − +  taken over the region bounded by
2 2 4, 0x y z+ = =  and 3z =           [20 Marks] 

112. Prove that the decomposition of a tensor into a symmetric and an anti-symmetric part is unique. 
Further show that the contracted product ij ijS T of a tensor ijT with a symmetric tensor ijS is 

independent of the anti-symmetric part of ijT .       [20 Marks] 

 

      1996 
 
113. State and prove ‘Quotient law’ of tensors       [20 Marks] 

114. If ˆ ˆ ˆxi yj zk+ + and r r= show that  

( ) ( ) 0i r gradf r =  

( ) ( ) ( 3)n nii div r r n r= +          [20 Marks] 

115. Verify Gauss’s divergence theorem for 2ˆ ˆ ˆ2F xyxi z j yzk= + +  on the tetrahedron

, 1x y z x y z= = = + + = .         [20 Marks] 

      1995 

 
116. Consider a physical entity that is specified by twenty-seven numbers ijkA  in given coordinate 

system. In the transition to anther coordinates system of this kind. Let ijk jkA B  transform as a 

vector for any choice of the anti-symmetric tensor. Prove that the quantities ijk ijkA A−  are the 

components of a tensor jkB  of third order. Is the component of tensor? Give reasons for your 

answer            [20 Marks] 
117. Let the reason V be bounded by the smooth surface S and let n denote outward drawn unit normal 

vector at a point on S. If  is harmonic in V, show that 0
s

ds
n


=


      [20 Marks] 

118. In the vector field ( )u x  let there exists a surfacecurl  on which 0v = . Show that, at an arbitrary 

point of this surfacecurl  is tangential to the surface or vanishes.    [20 Marks]  
 

     1994 
 

119. Show that nr r is an irrotational vector for any value of n, but is solenoidal only if 3n = − .  
            [20 Marks] 

120. If ( 2 )F yi x xz j xyk= + − − evaluate ( )s
F nds Where S is the surface of the sphere

2 2 2 2x y z a+ + =  above thexyplane.        [20 Marks] 

121. Prove that ( )
i

log g
xik

  
= 
 

.          [20 Marks] 
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      1993 
 
122. Prove that the angular velocity or rotation at any point is equal to one half of the curl of the velocity 

vector V.            [20 Marks] 

123. Evaluate
s

Fnds where S is the upper half surface of the unit sphere 2 2 2 1x y z+ + = and

ˆ ˆ ˆF zi xj yk= + +             [20 Marks] 

124. Show that
p

q

A

x




 is not a tensor even though pA is a covariant tensor or rank one   [20 Marks] 

 

      1992 
 

125. If 2 2 2 2 2 2( , , ) ( ) ( ) ( )F x y z y z i z x j x y k= + + + + then calculate
c

fdx where C consist of  

(i) The line segment form (0,0,0)  to (1,1,1) (ii) the three line segments ,AB BC and CDwhere 

, ,A B C andD are respectively the points (0,0,0),(1,0,0),(1,1,0) and(1,1,1)  (iii) the curve

2 2 ,x ui u j u k u+ + +  from 0 to 1.         [20 Marks] 

126. Ifa andb  are constant vectors, show that 

 ( ) ( ) 2i div x a x xa  = −  

 ( ) ( ) ( ) 2 ( ) 2 ( )ii div x a x b x a b x b a x    =  −       [20 Marks] 

127. Obtain the formula

1/2

1

1
( )

ij

g
divA A i

gg x−

    
=        

 where ( )A i are physical components of A

and use it to derive expression ofdivA  in cylindrical polar coordinates    [20 Marks] 


